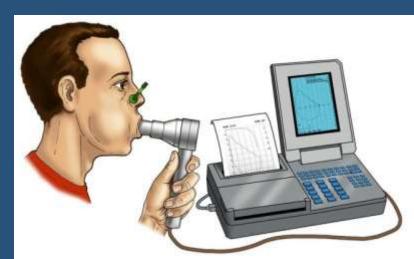


Спирометрия: возможности диагностики обструктивных заболеваний


Латышева Алена Николаевна к.м.н., врач-терапевт, врач-аллерголог-иммунолог

Спирометрия

функциональный неинвазивный метод измерения воздушных потоков и объемов как функции времени с использованием форсированных маневров

ПОКАЗАНИЯ К СПИРОМЕТРИИ

Диагностика

✓ установление причин респираторных жалоб и симптомов, отклонений в лабораторных показателях √предоперационная оценка риска √оценка прогноза заболевания √оценка функционального состояния перед участием пациента в программах с физическими нагрузками высокого уровня **√скрининг** популяций людей с высоким риском легочных заболеваний

Экспертная оценка нетрудоспособности /общественное здоровье

√обследование больного перед началом реабилитации √оценка рисков как части экспертной оценки нетрудоспособности **√**экспертная оценка состояния здоровья по другим юридическим поводам **√**эпидемиологические и клинические исследования, расчет должных значений спирометрических показателей

Наблюдение

оценка
эффективности
лечения
мониторирование
течения заболевания с
нарушением легочной
функции
мониторирование
побочных эффектов
лекарств с известной
способностью
вызывать
повреждения легких

Противопоказания к спирометрии

- Кровохарканье неизвестного происхождения
- Пневмоторакс (в течение 2 нед после его разрешения)
- Нестабильный сердечно-сосудистый статус, недавний инфаркт миокарда (в первые 2 недели после развития)
- Легочная эмболия
- Торакальные, абдоминальные или церебральные аневризмы
- Острые нарушения, влияющие на результаты теста, такие как тошнота или рвота
- Недавние хирургические операции на грудной и брюшной полости
- Недавняя хирургия глаза
- Тяжелая бронхиальная астма

Affected by: Age Height ✓ Weight Sex Ethnic Origin

Методика

исследо	Dallini
Лекарственный препарат	Время

Лекарственный преп	парат Время воздер	N/
локаротвонный проп	Бремя воздер	<u>М</u>

кания Бронходилятаторы короткого действия 6-8 часов

48 часов Бронходилататоры длительного

действия (сальметерол, формотерол)

Антихолинергические аэрозоли: 24 часа ипратропиум

Тиотропиум до 1 недели

От 12-48 часов Теофиллины, в зависимости от пролонгированности

Динатрия кромогликат 8 часов

Недокромил 48 часов

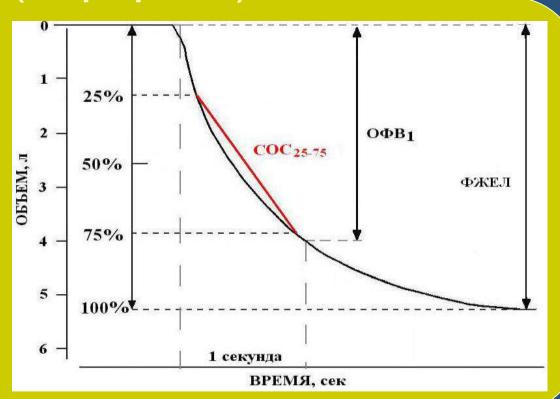
Пероральные бета-адренергические 24 часов агонисты

гиперреактивность)

Гидроксизин (атаракс), цетиризин 3 дня Антилейкотриеновые препараты 24 часа

иГКС, сГКС (могут уменьшать Длительность эффекта не известна, но м.б. продолжительной

Методика исследования І способ


Непосредственно измеряется объем вдыхаемого или выдыхаемого воздуха и время.

Строится график зависимости объема легких от времени - кривая объем-время (спирограмма)

СПИРОГРАММА ФОРСИРОВАННОГО ВЫДОХА

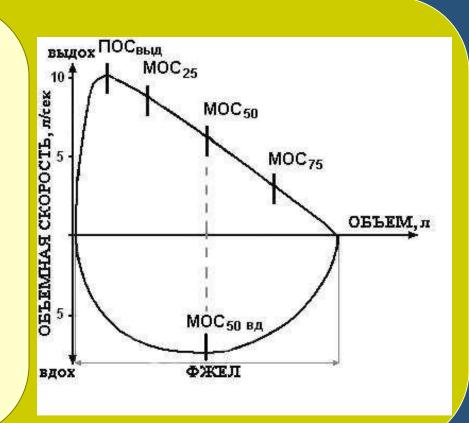
ФЖЕЛ – форсированная жизненная емкость легких, **ОФВ1** – объем форсированного выдоха за 1 секунду,

СОС25-75 — средняя скорость форсированного экспираторного потока на уровне 25-75% ФЖЕЛ.

Методика исследования II способ

Измеряется поток и время, а объем рассчитывают, умножая поток на время.

Строится график зависимости объемной скорости потока от объема легких - кривая поток-объем


НОРМАЛЬНАЯ ПЕТЛЯ ПОТОК-ОБЪЕМ

Получена при максимальных вдохе и выдохе

ПОСвыд – пиковая объемная скорость выдоха

МОС₂₅, МОС₅₀ и МОС₁₅ – максимальные объемные скорости выдоха, соответствующие 25, 50 и 75% объема ФЖЕЛ

МОС50вд – максимальная объемная скорость, когда пациент вдохнул 50% ФЖЕЛ

Критерии качества спирометрии


Наиболее частые ошибки при выполнении маневра форсированного выдоха:

А – медленное начало

Б – недостаточное усилие

В – кашель

Г – ранее завершение выдоха

ФОРСИРОВАННАЯ ЖИЗНЕННАЯ ЕМКОСТЬ ЛЕГКИХ (ФЖЕЛ)

максимальный объем воздуха, который человек может выдохнуть после максимально глубокого вдоха

снижение

- **√**Обструктивные заболевания легких
- **√Патология легочной ткани** (резекция легких, ателектаз)
- ✓ Состояния, при которых уменьшается растяжимость легочной ткани (фиброз, застойная сердечная недостаточность)
- **√**Патология плевры и плевральных полостей
- √Уменьшение размеров грудной клетки
- ✓Нарушение нормальной работы дыхательных мышц (диафрагмы, межреберных мышц и мышц брюшной стенки)

повышение

✓Акромегалия (все остальные легочные параметры нормальные)

ОБЪЕМ ФОРСИРОВАННОГО ВЫДОХА ЗА 1 СЕКУНДУ (ОФВ1)

объем воздуха, который человек может выдохнуть за первую секунду маневра ФЖЕЛ

снижение

√ПРИ ОБСТРУКТИВНЫХ НАРУШЕНИЯХ: при эмфиземе, ХОБЛ, бронхиальной астме (обусловлено снижением скорости воздушного потока)

Коррелирует с тяжестью обструкции

√ПРИ РЕСТРИКТИВНЫХ НАРУШЕНИЯХ: при легочном фиброзе (обусловлено ограничением расправления легких)

Как различить, что явилось причиной снижения ОФВ1 - рестрикция или обструкция?

необходимо вычисление соотношения ОФВ1/ФЖЕЛ

СООТНОШЕНИЕ ОФВ1/ФЖЕЛ (индекс Генслара)

модификация индекса Тиффно (ОФВ1/ЖЕЛвд):

- ЖЕЛвд максимальный объем воздуха, который можно вдохнуть после полного спокойного выдоха)
- выражается в %
- **У здорового человека** это соотношение составляет **75–85**%
- **У детей** ОФВ1/ФЖЕЛ **около 90%** (за счет высокой скорости воздушных потоков)
- **С возрастом** ОФВ1/ФЖЕЛ **уменьшается** (связано с тем, что скорость выдоха снижается в большей степени, чем объем легких)

снижение

повышение

При обструктивных нарушениях

Причина: ОФВ1 снижается соответственно тяжести обструкции, а ФЖЕЛ при этом также уменьшается, но, как правило, в меньшей степени

При рестриктивных нарушениях

Причина: ОФВ1 и ФЖЕЛ снижаются пропорционально, следовательно, их соотношение будет в пределах нормальных величин или даже немного выше

Другие показатели максимального экспираторного потока

- **COC**₂₅₋₇₅ средняя объемная скорость в средней части форсированного экспираторного маневра между 25% и 75% ФЖЕЛ.
- Некоторые исследователи считают, что СОС25-75 более чувствителен, чем ОФВ1, при диагностике ранних стадий бронхиальной обструкции

Пиковая объемная скорость выдоха (ПОСвыд) или пиковая скорость выдоха (ПСВ)

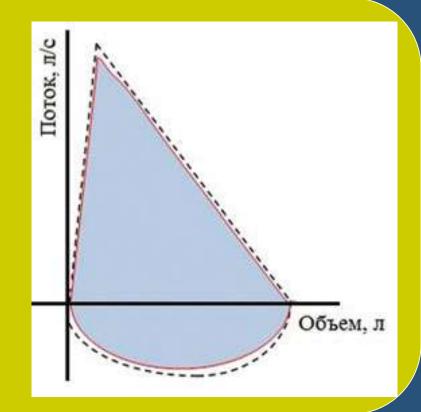
ИЛИ

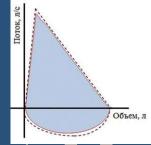
максимальная экспираторная скорость — показатель, который измеряется в течение короткого отрезка времени сразу после начала выдоха и выражается либо в л/мин, либо в л/сек.

ПОСвыд в большей степени, чем другие показатели, зависит от усилия пациента: для получения воспроизводимых данных пациент должен в начале выдоха приложить максимум усилия

Для измерения ПСВ в домашних условиях и самоконтроля используют портативные приборы (пикфлоуметры)

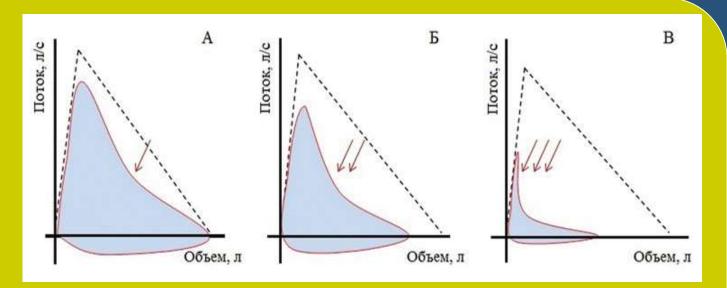
• Интерпретация результатов спирометрии строится на анализе основных спирометрических параметров (ОФВ1, ЖЕЛ, ОФВ1/ЖЕЛ).


Оценка спирометрии


Уже на этапе проведения спирометрических маневров врач оценивает визуально кривую «поток-объем» пациента, сравнивая с должной экспираторной кривой

ВИЗУАЛЬНАЯ ОЦЕНКА КРИВОЙ «поток-объем»:

- •пунктирная линия должная кривая;
- •сплошная красная линия нормальная кривая «потокобъем»


Оценка спирометрии ОБСТРУКТИВНЫЙ ТИП вентиляционных нарушений

- Расположение кривой поток-объем под должной кривой из-за снижения экспираторных потоков, зависящее от тяжести нарушений
- Приобретение нисходящим коленом кривой поток-объем вогнутой формы, так как характерно линейное снижение скорости потока
- Нарушение линейности нижней половины кривой поток-объем, из-за наличия бронхиальной обструкции, даже когда ФЖЕЛ и ОФВ1 не выходят за пределы нормальных значений

Кривые потокобъем у больных:

объем у больных: А - легкая обструкция при БА Б - выраженная обструкция при БА В - экспираторный коллапс дистальных отделов дыхательных путей при эмфиземе легких

Стрелками обозначен прогиб экспираторной кривой «поток-объем» к оси объема

Выраженность изменений формы кривой зависит как от тяжести обструктивных нарушений, так и от нозологической формы:

- ъбронхиальная астма,
- >ХОБЛ,
- **ж**ыфизема,
- **Ж**УКОВИСЦИДОЗ,
- эсдавление крупных бронхов и трахеи опухолью извне,
- эстенозирование эндофитно растущей опухолью, рубцовой тканью, инородным телом.

Оценка спирометрии ОБСТРУКТИВНЫЙ ТИП вентиляционных нарушений

- Для определения тяжести обструктивных нарушений НЕ рекомендуется использовать отношение ОФВ1/ФЖЕЛ, поскольку при прогрессировании заболевания ОФВ1 и ФЖЕЛ могут снижаться синхронно, а их соотношение останется при этом нормальным
- Для оценки тяжести обструктивных нарушений в большинстве случаев используют степень отклонения ОФВ1 от должного значения

Классификация тяжести бронхиальной обструкции по ОФВ1 (ERS/ATS, 2005) ОФВ1 (%) Степень тяжести

от должного Легкие >70%

60 - 69%

< 35%

Среднетяжелые 50 – 59%

Тяжелые 35 – 49%

Умеренные

Крайне тяжелые Несмотря на новую классификацию степени тяжести ХОБЛ, не теряет

своей актуальности существовавшая ранее, основанная на величине постбронходилатационного ОФВ1 при отношении ОФВ1/ФЖЕЛ<0,7

Классификация степени тяжести ограничения скорости воздушного потока при ХОБЛ (GOLD, 2014)

Показатель от

Степень тяжести

должного (%)

ОФВ1≥80%

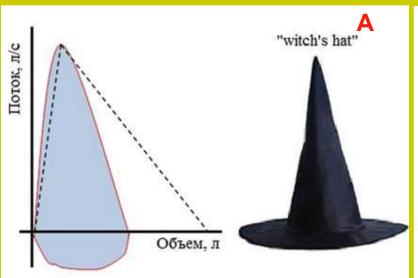
GOLD I

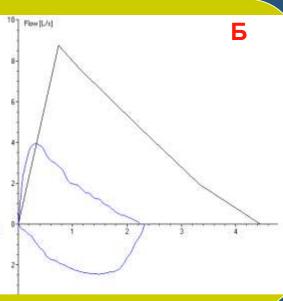
GOLD II 50≤OΦB1<80%

GOLD III 30≤ОФВ1<50%

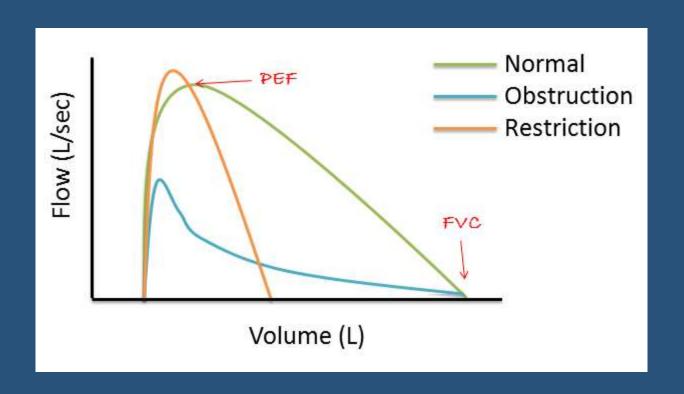
GOLD IV ОФВ1<30%

Рестриктивные вентиляционные нарушения могут встречаться при:


- Интерстициальных заболеваниях легких,
- Марка и праводни предостава и предоста
- Гипоплазии и ателектазах легкого,
- После резекции легочной ткани.
- ✓ При внелегочной патологии:
- Поражение грудного отдела позвоночника, ребер, дыхательной мускулатуры; высокое стояние диафрагмы, что делает невозможным выполнение глубокого полноценного вдоха;
- Нарушение регуляции дыхания при угнетении дыхательного центра наркотическими препаратами
- Повреждение дыхательного центра опухолью, кровоизлиянием


Для диагностики рестриктивных нарушений недостаточно спирометрического исследования, а следует выполнить бодиплетизмографию и измерить легочные объемы

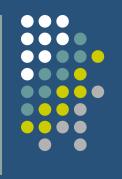
Оценка спирометрии Рестриктивные вентиляционные нарушения


- »Рестриктивные нарушения вентиляции обусловлены процессами, снижающими растяжимость легких и, следовательно, ограничивающими наполнение легких воздухом.
- При прогрессировании заболевания происходит уменьшение воздушности легочной ткани, проявляющееся <u>снижением ЖЕЛ.</u> Кривая поток-объем приобретает узкую высокую форму (шляпа ведьмы) по сравнению с должной кривой ФЖЕЛ
- Пиковая объемная скорость обычно остается нормальной, после пика наблюдается быстрое линейное снижение потока
- »Форма кривой может и не меняться, а представлять собой пропорционально уменьшенную копию должной кривой, как, например, при пульмонэктомии

Кривые потокобъем у больных с рестриктивными вентиляционным и нарушениями: А - фиброз легких Б - пульмонэктомия

В начальных стадиях заболеваний, вызывающих рестриктивный тип изменений механики дыхания спирограмма может быть нормальной, особенно у пациентов, у которых исходно ЖЕЛ была больше нормы Методом, подтверждающим рестрикцию, является бодиплетизмография, позволяющая измерить все легочные объемы

Оценка спирометрии СМЕШАННЫЙ ТИП вентиляционных нарушений


- развиваются при сужении просвета дыхательных путей на фоне уменьшения легочных объемов
- При этом спирометрия будет регистрировать одновременное снижение ФЖЕЛ, ОФВ1 и ОФВ1/ФЖЕЛ
- Для уточнения характера функциональных нарушений необходимо выполнять бодиплетизмографию с измерением легочных объемов

Бронходилатационный тест

Бронходилатационный тест

При первичном исследовании функции дыхания почти всегда желательно выполнить бронходилатационный тест (бронходилатационную пробу), то есть повторить спирометрию после ингаляции бронходилататора

Показания для проведения бронходилатационного теста:

- установление обратимости бронхиальной обструкции, включая пациентов с нормальными показателями исходной спирометрии
- определение потенциального эффекта бронхолитической терапии
- мониторирование динамики легочной функции у больных с хроническими респираторными заболеваниями при длительном (многолетнем) наблюдении

Противоказания для проведения бронходилатационного теста:

- Противопоказаний к проведению бронходилатационного теста не существует за исключением тех ситуаций, в которых противопоказано выполнение спирометрии, и случаев непереносимости бронхорасширяющих препаратов.
- Если пациент не переносит β2-агонисты, то в качестве бронходилататора можно использовать М-холинолитик короткого действия

Методика проведения бронходилатационного теста

•Перед проведением бронходилатационного теста следует прекратить использование любых бронхорасширяющих препаратов на срок, соответствующий длительности их действия •Если отменить препараты нельзя, то в протоколе исследования указывают название препарата, дозу и время последней ингаляции •Курение не допускается в течение 1 ч до тестирования и на протяжении всего тестирования

Препараты	Срок отмены перед пробой
Короткодействующие ингаляционные β2-агонисты (сальбутамол, фенотерол)	4-6 ч
Антихолинергические препараты (ипратропия бромид)	4-6 ч
Пролонгированные β2- агонисты (сальметерол, формотерол)	12 ч
Метилксантины	12 ч
Пролонгированные холинолитики (тиотропия бромид, гликопиррония бромид)	24 ч

Методика проведения бронходилатационного теста

Для достижения максимально возможной бронходилатации рекомендуется использовать короткодействующие β2-агонисты

- сальбутамол, в виде дозированного аэрозольного ингалятора в максимальной разовой дозе 400 мкг (четыре ингаляции по 100 мкг с интервалом в 30 сек)
- фенотерол в максимальной разовой дозе 400 мкг (4 ингаляции по 100 мкг с интервалом в 30 сек)
- Проба проводится с помощью спейсера или с соблюдением всех правил ингаляционной техники для дозированных аэрозольных ингаляторов (после спокойного неполного выдоха плавный максимально глубокий вдох с активацией ингалятора (нажатием на клавишу) одновременно с началом вдоха, задержка дыхания на высоте вдоха на 10 сек).

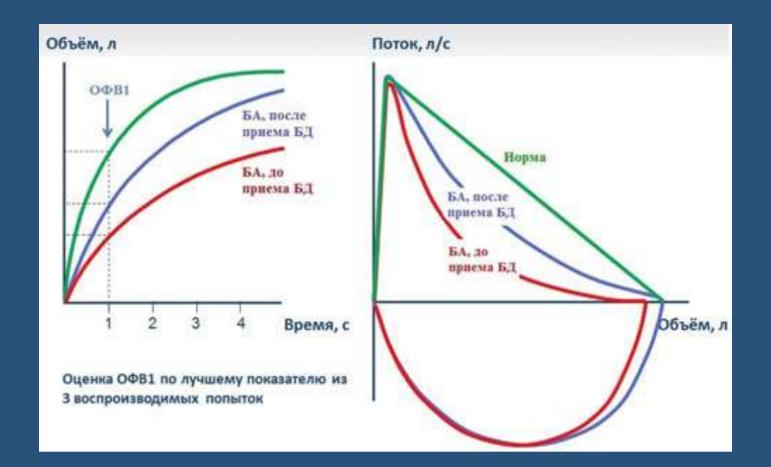
Без использования спейсера вдыхаемая фракция аэрозоля меньше и ее величина в значительной степени зависит от синхронизации вдоха с активацией ингалятора

Повторную спирометрию проводят через 15 минут.

При использовании М-холинолитика в качестве бронходилататора максимальная разовая доза составляет 160 мкг (4 дозы по 40 мкг)

Повторную спирометрию выполняют через 30 мин

Интерпретация результатов бронходилатационного теста


Бронходилатационный тест считается положительным, если после ингаляции бронходилататора коэффициент бронходилатации (КБД) составляет более 12%, а абсолютный прирост - более 200 мл

Абсолютный прирост (мл) = Π оказатель $_{mocno}$ (мл) – Π оказатель $_{mcn}$ (мл),

где **Показатель** осле - значение спирометрического показателя после ингаляции бронходилататора,

Показательисх - значение спирометрического показателя до ингаляции бронходилататора

(GINA, 2016)

Типичные кривые «объем-время» и «поток-объем» при обратимой бронхиальной обструкции (по GINA, 2016)

Пикфлоуметрия

Пикфлоуметрия

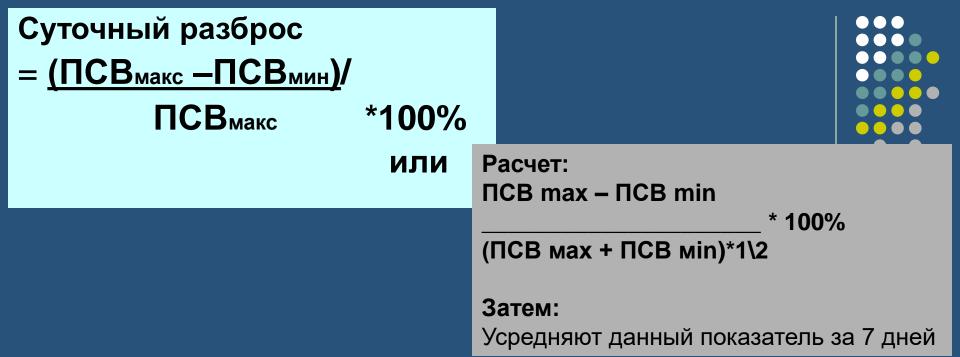
- это метод функциональной диагностики, исследующий лишь показатель функции внешнего дыхания пиковую объемную скорость выдоха (ПСВ)
- ПСВ максимальная скорость, с которой воздушные массы проходят по дыхательным путям при осуществлении пациентом форсированного выдоха, то есть быстрого выдоха после полного вдоха, когда легкие находятся в максимально расправленном положении.
- ПСВ характеризует степень обструкции бронхов (сужения их просвета в результате спазма мышечной стенки или закупорки его вязкой трудно отделяемой мокротой)
- Проводят пикфлоуметрию при помощи портативного прибора индивидуального предназначения пикфлоуметра

Оценка пикфлоуметрии

Для простоты оценки пиковой скорости выдоха (ПСВ) используется принцип «Светофора»

Значения показаний делятся на зоны: зеленая, желтая и красная.

Зеленая зона — показатель нормы.


Показатели ПВС в зеленой зоне составляют от 80% до 100% от прогнозируемых личных лучших значений.

Она сигнализирует, что астма находится под контролем.

Желтая зона показаний находится в интервале от 50% до 80% от лучших личных или прогнозируемых значений ПСВ Сигнализирует об обострении заболевания, о том, что астма стала ухудшаться.

Красная зона — сигнал тревоги.

В красной зоне показатели ПСВ находятся в интервале ниже 50 % от лучших личных значений

Суточную вариабельность ПСВ определяют как амплитуду ПСВ между максимальным и минимальным значениями в течение дня, выраженную в процентах от средней за день ПСВ и усредненную за 1 неделю

Проводят измерение ПСВ 2 раза в сутки (при каждом измерении выбирают лучшую из 3 попыток) в течение по меньшей мере 2 недель

•Для диагностики БА за конечный результат принимается среднее значение за период 1–2 нед.