Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное научное учреждение «Федеральный исследовательский центр «Красноярский научный центр Сибирского отделения Российской академии наук» (КНЦ СО РАН, ФИЦ КНЦ СО РАН)

УТВЕРЖДАЮ:

Директор ФИЦ КНЦ СО РАН

_А.А. Шпедт

« 25 »

2022г.

ПРОГРАММА КАНДИДАТСКОГО ЭКЗАМЕНА ПО СПЕЦИАЛЬНОЙ ДИСЦИПЛИНЕ

«Радиофизика»

Научная специальность: 1.3.4 «Радиофизика»

Отрасль наук: физико-математические, технические науки

1 Общие положения

Программа кандидатского экзамена разработана на кафедре фундаментальных дисциплин и методологии науки факультета подготовки кадров ФИЦ КНЦ СО РАН в соответствии со следующими документами:

- РΦ Приказом Министерства высшего образования науки И 20 №951 «Об октября 2021 г. утверждении федеральных государственных требований к структуре программ подготовки научных и научно-педагогических кадров в аспирантуре (адъюнктуре), условиям их реализации, срокам освоения этих программ с учетом различных форм обучения, образовательных технологий и особенностей отдельных категорий аспирантов (адъюнктов)»;
- Постановлением Правительства РФ от 24 сентября 2013 г. № 842 «О порядке присуждения ученых степеней»;
- Положением о подготовке научных и научно-педагогических кадров в аспирантуре ФИЦ КНЦ СО РАН;
- Порядком сдачи кандидатских экзаменов и прикрепления лиц к ФИЦ КНЦ СО РАН для сдачи кандидатских экзаменов;
- Паспортом научной специальности.

Цель проведения экзамена: оценить уровень знаний, умений и навыков в области радиофизики.

Экзамен по специальной дисциплине должен выявить уровень теоретической и профессиональной подготовки экзаменуемого, знание общих концепций и методологических вопросов данной науки, истории ее формирования и развития, фактического материала, основных теоретических и практических проблем данной отрасли знаний.

К кандидатскому экзамену допускаются лица, прикрепленные к ФИЦ КНЦ СО РАН для сдачи кандидатских экзаменов без освоения программы подготовки научных и научно-педагогических кадров в аспирантуре, и аспиранты, обучающиеся в ФИЦ КНЦ СО РАН по программам подготовки научных и научно-педагогических кадров в аспирантуре (далее – экзаменуемые).

Кандидатский экзамен по дисциплине «Радиофизика» проводится по билетам. Экзаменационный билет включает в себя три теоретических вопроса по данной научной специальности и отрасли науки, по которой подготавливается или подготовлена диссертация.

2 Содержание программы кандидатского экзамена

1. Принципы усиления, генерации и управления сигналами

- 1. Принцип работы, устройство и параметры лазеров (примеры: гелийнеоновый лазер, лазер на рубине, полупроводниковый лазер).
- 2. Оптические резонаторы. Резонатор Фабри-Перо, конфокальный и концентрический резонаторы. Неустойчивый резонатор. Продольные и поперечные типы колебаний. Спектр частот и расходимость излучения. Добротность.
- работы лазеров: непрерывный режим генерации, режим 3. Режимы добротности резонатора, режим синхронизации модуляции мод. Сверхкороткие импульсы. Шумы лазеров, формула Таунса и предельная стабильность частоты. Оптические компрессоры И получение фемтосекундных импульсов.
- 4. Молекулярный генератор. Квантовые стандарты частоты (времени).
- 5. Волноводы, длинные линии и резонаторы. Критическая частота и критическая длина волновода. *ТЕ-*, *TH*,- и *TEM*-волны. Диэлектрические волноводы. Периодические структуры и замедляющие системы. Волновое сопротивление.
- 6 Усилители СВЧ-диапазона (резонаторный, бегущей волны). Полоса пропускания усилителя бегущей волны.
- 7. Генерация волн в СВЧ диапазоне. Принцип работы и устройство лампы бегущей и обратной волны, магнетрона и клистрона. Отрицательное дифференциальное сопротивление и генераторы СВЧ на полевых транзисторах, туннельных диодах, диодах Ганна и лавиннопролетных диодах. Эффект Джозефсона.
- 8. Взаимодействие волн пространственного заряда с акустическим полем, акустоэлектрический эффект. Принципы работы акустоэлектронных устройств (усилители ультразвука, линии задержки, фильтры, конвольверы, запоминающие устройства).
- 9. Взаимодействия света со звуком. Дифракция Брэгга и Рамана-Ната. Принципы работы устройств акустооптики (модуляторы и дефлекторы света, преобразователи свет-сигнал, акустооптические фильтры), анализаторы спектра и корреляторы.
- 10. Линейный электрооптический и магнитооптический эффекты и их применение для управления светом.

2. Антенны и распространение радиоволн

1. Вибратор Герца. Ближняя и дальняя зоны. Диаграмма направленности. Коэффициент усиления и коэффициент рассеяния антенны. Антенны для ДВ, СВ и СВЧ диапазонов. Параболическая антенна. Фазированные антенные решетки. Эффективная площадь и шумовая температура приемной антенны.

2. приближения Геометрическое и дифракционное при анализе распространения радиоволн. Влияние неровностей земной поверхности. Земные и тропосферные радиоволны. Рассеяние и поглощение радиоволн "замирания". тропосфере. Эффект Тропосферный волновод. в ионосфере. Дисперсия и Распространение радиоволн поглошение радиоволн в ионосферной плазме. Ионосферная рефракция. Ход лучей в подводном звуковом канале и тропосферном радиоволноводе.

3. Выделение сигналов на фоне помех

- 1. Задачи оптимального приема сигнала. Апостериорная плотность вероятности. Функция правдоподобия. Статистическая проверка гипотез. Критерии Байеса, Неймана-Пирсона и Вальда проверки гипотез.
- 2. Априорные сведения о сигнале и шуме. Наблюдение и сообщение. Задачи интерполяции, фильтрации и экстраполяции.
- 3. Линейная фильтрация Колмогорова-Винера на основе минимизации дисперсии ошибки. Принцип ортогональности ошибки и наблюдения. Реализуемые линейные фильтры и уравнение Винера-Хопфа. Выделение сигнала из шума. Согласованный фильтр.
- 4. Линейный фильтр Калмана-Бьюси. Стохастические уравнения для модели сообщения и шума. Дифференциальные уравнения фильтра. Уравнение для апостериорной информации в форме уравнения Риккати. Сравнение фильтрации методом Колмогорова-Винера и Калмана-Бьюси.
- 5. Основные задали нелинейной фильтрации и синтеза систем.

3. Перечень вопросов к кандидатскому экзамену по дисциплине «Радиофизика»

- 1. Принцип работы, устройство и параметры лазеров (примеры: гелийнеоновый лазер, лазер на рубине, полупроводниковый лазер).
- 2. Оптические резонаторы. Резонатор Фабри-Перо, конфокальный и концентрический резонаторы. Неустойчивый резонатор. Продольные и поперечные типы колебаний. Спектр частот и расходимость излучения. Добротность.
- 3. Режимы работы лазеров: непрерывный режим генерации, режим модуляции добротности резонатора, режим синхронизации мод. Сверхкороткие импульсы. Шумы лазеров, формула Таунса и предельная стабильность частоты. Оптические компрессоры и получение фемтосекундных импульсов.
- 4. Молекулярный генератор. Квантовые стандарты частоты (времени).
- 5. Волноводы, длинные линии и резонаторы. Критическая частота и критическая длина волновода. ТЕ-, ТН-, и ТЕМ-волны. Диэлектрические волноводы. Периодические структуры и замедляющие системы. Волновое сопротивление.

- 6. Усилители СВЧ-диапазона (резонаторный, бегущей волны). Полоса пропускания усилителя бегущей волны.
- 7. Генерация волн в СВЧ диапазоне. Принцип работы и устройство лампы бегущей и обратной волны, магнетрона и клистрона. Отрицательное дифференциальное сопротивление и генераторы СВЧ на полевых транзисторах, туннельных диодах, диодах Ганна и лавиннопролетных диодах. Эффект Джозефсона.
- 8. Взаимодействие волн пространственного заряда с акустическим полем, акустоэлектрический эффект. Принципы работы акустоэлектронных устройств (усилители ультразвука, линии задержки, фильтры, конвольверы, запоминающие устройства).
- 9. Взаимодействия света со звуком. Дифракция Брэгга и Рамана-Ната. Принципы работы устройств акустооптики (модуляторы и дефлекторы света, преобразователи светсигнал, акустооптические фильтры), анализаторы спектра и корреляторы.
- 10. Линейный электрооптический и магнитооптический эффекты и их применение для управления светом.
- 11. Вибратор Герца. Ближняя и дальняя зоны. Диаграмма направленности. Коэффициент усиления и коэффициент рассеяния антенны. Антенны для ДВ, СВ и СВЧ диапазонов. Параболическая антенна. Фазированные антенные решетки. Эффективная площадь и шумовая температура приемной антенны.
- 12. Геометрическое и дифракционное приближения при анализе распространения радиоволн. Влияние неровностей земной поверхности. Земные и тропосферные радиоволны. Рассеяние и поглощение радиоволн в тропосфере. Эффект "замирания". Тропосферный волновод. Распространение радиоволн в ионосфере. Дисперсия и поглощение радиоволн в ионосферной плазме. Ионосферная рефракция. Ход лучей в подводном звуковом канале и тропосферном радиоволноводе.
- 13. Задачи оптимального приема сигнала. Апостериорная плотность вероятности. Функция правдоподобия. Статистическая проверка гипотез. Критерии Байеса, Неймана-Пирсона и Вальда проверки гипотез.
- 14. Априорные сведения о сигнале и шуме. Наблюдение и сообщение. Задачи интерполяции, фильтрации и экстраполяции.
- 15. Линейная фильтрация Колмогорова-Винера на основе минимизации дисперсии ошибки. Принцип ортогональности ошибки и наблюдения. Реализуемые линейные фильтры и уравнение Винера-Хопфа. Выделение сигнала из шума. Согласованный фильтр.

4. Критерии оценивания ответа

Отлично	Полно раскрыто содержание вопросов; материал
	изложен грамотно, в определенной логической
	последовательности, правильно используется
	терминология; показано умение иллюстрировать

	теоретические положения конкретными
İ	примерами, применять их в новой ситуации;
	продемонстрировано усвоение ранее изученных
	сопутствующих вопросов, ответ прозвучал
	самостоятельно, без наводящих вопросов.
Хорошо	Ответ удовлетворяет в основном требованиям на
	оценку «отлично», но при этом может иметь
	следующие недостатки: в изложении допущены
	небольшие пробелы, не исказившие содержание
	ответа допущены один -два недочета при
	освещении основного содержания ответа,
	исправленные по замечанию; допущены ошибка
	или более двух недочетов при освещении
	второстепенных вопросов, которые легко
	исправляются по замечанию
Удовлетворительно	Неполно или непоследовательно раскрыто
	содержание материала, но показано общее
	понимание вопроса. Имелись затруднения или
	допущены ошибки в определении понятий,
	использовании терминологии, исправленные после
	нескольких наводящих вопросов.
Неудовлетворительно	Имели место существенные упущения при ответах
	на все вопросы билета или полное несоответствие
	по более чем 50% материала вопросов билета

5. Учебно-методическое и информационное обеспечение

5.1 Основная литература

- 1 Н. В. Карлов, Н.А. Кириченко. Колебания, волны, структуры. М.: Физматлит, 2001.
- 2 М. Б. Виноградова, О.В. Руденко, А.П. Сухоруков. Теория волн. М.: Наука, 1990.
- 3 М. И. Рабинович, Д.И. Трубецков. Основы теории колебаний и волн. М.: Наука. 1987.
- 4 Н. Н. Моисеев. Асимптотические методы нелинейной механики. М.: Наука, 1981
- 5 С.А. Ахманов, Ю.Е. Дьяков, А.С. Чиркин. Введение в статистическую радиофизику и оптику, М.: Наука, 1981.
- 6 Н. М. Цейтлин. Антенная техника и радиоастрономия. М.: Радио и связь, 1976.
- 7 В. И. Тихонов, В. Н. Харисов. Статистический анализ и синтез радиотехнических устройств и систем. М.: Радио и связь, 1991.
- 8 А. Ярив, П.Юх. Оптические волны в кристаллах. М.: Мир, 1987.

- 9 Г. Кайно. Акустические волны. Устройства, визуализация и аналоговая обработка сигналов. М.: Мир, 1990.
- 10 В. В. Никольский, Т.И. Никольская. Электродинамика и распространение радиоволн. М.: Наука, 1989.

5.2. Дополнительная литература

- 1 Ф. Качмарек. Введение в физику лазеров. М.: Мир, 1981.
- 2 Л. А. Вайнштейн, В. А. Солнцев. Лекции по сверхвысокочастотной электронике. М.: Сов. радио, 1973.
- 3 В. А. Зверев. Радиооптика. М.: Сов. радио, 1975.
- 4 М. Букингем. Шумы в электронных приборах и ситемах. М.: Мир, 1986.
- 5 Н. В. Карлов. Лекции по квантовой электронике. М.: Наука, 1983.
- 6 Б. Р. Левин. Теоретические основы статистической радиотехники. М.: Радио и связь, 1989.
- 7 Л. В. Ландау, Е. М. Лифшиц. Статистическая физика. М.: Наука. 1999, том V, часть 1.
- 8 Е. Л. Фейнберг. Распространение радиоволн вдоль земной поверхности. М.: Наука. 1999.

5.3 Интернет ресурсы

- 1. Scopus, база данных рефератов и цитирования, http://www.scopus.com.
- 2. ScienceDirect (Elsevier), база данных научного цитирования, естественные науки, техника, медицина и общественные науки, http://www.sciencedirect.com.
- 3. :Web of Science Core Collection международная междисциплинарная база данных научного цитирования, http://www.webofknowledge.com.
- 4. Электронно-библиотечная система издательства «ЛАНЬ», http://e.lanbook.com.
- 5. Университетская библиотека ONLINE, электронно-библиотечная система, http://biblioclub.ru/.
- 6. Образовательная платформа электронно-библиотечная система издательства «Юрайт», https://urait.ru/.
- 7. Электронно-библиотечная система Znanium.com, http://www.znanium.com.
- 8. Центральная Научная Библиотека имени Н.И. Железнова, http://www.library.timacad.ru.
- 9. United Nations Environment Program: www.unep.org.
- 10.eLIBRARY.RU Научная электронная библиотека, http://elibrary.ru/.
- 11. Национальная электронная библиотека, https://rusneb.ru/.
- 12.Электронная библиотека IOP Science дома научного контента от IOP Publishing, http://iopscience.iop.org/.
- 13. Электронная библиотека SPIE. Digital library, http://spiedigitallibrary.org/.
- 14. Архив научных журналов Министерства образования и науки Российской Федерации, http://archive.neicon.ru/xmlui/.

- 15.Библиотека издательства Annual Reviews, библиотека журналов http://www.annualreviews.org.
- 16.Библиотека Российского фонда фундаментальных исследований, http://www.rfbr.ru/rffi/ru/library.
- 17. Центральная научная библиотека ФИЦ КНЦ СО РАН, http://cnb.krasn.ru.
- 18. Электронная библиотека Nature, http://www.nature.com.
- 19. Электронная библиотека Science, http://www.sciencemag.org.
- 20.База данных научного цитирования издательства Taylor&Francis Group, http://www.tandfonline.com/.
- 21.Онлайн-библиотека Wiley Online Library, http://onlinelibrary.wiley.com.
- 22.Электронная библиотека журналов открытого доступа ACS Publications, http://pubs.acs.org/.
- 23. Электронная библиотека журналов Американского физического общества APS physics, http://publish.aps.org.
- 24.Электронно-библиотечная система Scitation, издательство AIP Publishing Books, http://scitation.aip.org/.
- 25. Цифровой образовательный ресурс электронная библиотечная система IPR SMART, http://www.iprbookshop.ru/.
- 26.Библиотека издательства Oxford Academic, http://www.oxfordjournals.org.
- 27.Справочная библиотека издательства Oxford University Press, цифровая платформа Oxford Reference, http://www.oxfordreference.com.
- 28.Электронная система исследовательских журналов мирового уровня открытого доступа SAGE journais, http://online.sagepub.com/.

Согласовано:

Заведующий кафедрой фундаментальных

дисциплин и методологии науки

В.В. Минеев

Заведующий аспирантурой

Е.В. Нефедова

Декан факультета подготовки кадров

А.Н. Кокорин