Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное научное учреждение «Федеральный исследовательский центр «Красноярский научный центр Сибирского отделения Российской академии наук» (КНЦ СО РАН, ФИЦ КНЦ СО РАН)

ПРОГРАММА ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ ПО СПЕЦИАЛЬНОЙ ДИСЦИПЛИНЕ

«Физическая химия»

для поступающих на обучение по образовательной программе высшего образования – программе подготовки научных и научно-педагогических кадров в аспирантуре ФИЦ КНЦ СО РАН

по научной специальности 1.4.4 «Физическая химия»

1 Общие положения

Настоящая сформирована программа на федеральных основе государственных требований к структуре программ подготовки научных и научно-педагогических кадров в аспирантуре И определяет содержание вступительного испытания ПО специальной дисциплине «Физическая химия» при приеме на обучение по программам подготовки научных и научно-педагогических кадров в аспирантуре Федерального государственного бюджетного научного **учреждения** «Федеральный исследовательский центр «Красноярский научный Сибирского центр отделения Российской академии наук»

Вступительное испытание по специальной дисциплине «Физическая химия» нацелено на оценку знаний лиц, поступающих на программу подготовки научных и научно-педагогических кадров в аспирантуре, полученных ими в ходе освоения программ специалитета и (или) магистратуры, и на отбор среди поступающих лиц, наиболее способных и подготовленных к научной и научно-исследовательской деятельности, имеющих потенциал в части генерирования новых идей при решении исследовательских задач и подготовки диссертации на соискание ученой степени кандидата наук.

2 Форма проведения вступительного испытания

Вступительное испытание проводится на русском языке в устной форме. Экзаменационный билет содержит три теоретических вопроса. Вопросы соответствуют содержанию вступительного испытания.

3 Содержание программы

Раздел 1. Строение вещества

1.1. Основы классической теории химического строения

Основные положения классической теории химического строения. Связь строения и свойств молекул.

1.2. Физические основы учения о строении молекул

Электронное строение атомов и молекул. Одноэлектронное приближение. Атомные и молекулярные орбитали. Электронные конфигурации и термы атомов. Правило Хунда. Электронная плотность. Распределение электронной плотности в двухатомных молекулах.

1.3. Межмолекулярные взаимодействия

Основные составляющие межмолекулярных взаимодействий. Молекулярные комплексы. Ван-дер-ваальсовы взаимодействия. Кластеры атомов и молекул. Во- дородная связь. Супермолекулы и супрамолекулярная химия.

1.4. Строение конденсированных фаз

Идеальные кристаллы. Кристаллическая решетка и кристаллическая структура. Реальные кристаллы. Типы дефектов в реальных кристаллах.

Кристаллы с неполной упорядоченностью. Доменные структуры. Атомные, ионные, молекулярные и другие типы кристаллов.

1.5. Поверхность конденсированных фаз

Особенности строения поверхности кристаллов и жидкостей, структура границы раздела конденсированных фаз. Молекулы и кластеры на поверхности. Структура адсорбционных слоев.

Раздел 2. Химическая термодинамика

2.1. Основные понятия и законы термодинамики

Основные понятия термодинамики: изолированные и открытые системы, равновесные и неравновесные системы, термодинамические переменные, температура. Уравнения состояния.

2.2. Первый закон термодинамики.

Теплота, работа, внутренняя энергия, энтальпия, теплоемкость. Закон Гесса. Стандартные состояния и стандартные теплоты химических реакций. Зависимость теплового эффекта реакции от температуры. Формула Кирхгофа. Таблицы стандартных термодинамических величин и их использование в термодинамических расчетах.

2.3. Второй закон термодинамики.

Энтропия и ее изменения в обратимых и необратимых процессах. Химическое равновесие. Закон действующих масс. Различные шкалы температур.

2.4. Растворы. Фазовые равновесия

Различные типы растворов. Способы выражения состава растворов. Давление насыщенного пара жидких растворов. Гетерогенные системы. Понятия компонента, фазы, степени свободы.

2.5. Адсорбция и поверхностные явления

адсорбат. Виды Адсорбент, адсорбции. Структура поверхности и пористость адсорбента. Локализованная и делокализованная адсорбция. адсорбция. Мономолекулярная И полимолекулярная Динамический характер адсорбционного равновесия. Изотермы и изобары адсорбции, их характеристики. Десорбция. Уравнение Генри. Константа адсорбционного равновесия. Уравнение Лэнгмюра. Адсорбция из растворов. Уравнение Брунауэра - Эмета - Теллера (БЭТ) для полимолекулярной адсорбции. Определение площади поверхности адсорбента. Поверхность раздела фаз. Свободная поверхностная энергия, поверхностное натяжение. Раздел 3. Кинетика химических реакций

3.1. Основные понятия химической кинетики.

Простые и сложные реакции, молекулярность и скорость простой реакции. Основной постулат химической кинетики. Способы определения скорости реакции. Кинетические кривые. Кинетические уравнения. Константа скорости и порядок реакции. Реакции переменного порядка.

3.2. Феноменологическая кинетика сложных химических реакций.

Принцип независимости элементарных стадий. Кинетические уравнения для обратимых, параллельных и последовательных реакций. Зависимость

скорости реакции от температуры. Уравнение Аррениуса. Энергия активации и способы ее определения.

3.3. Различные типы химических реакций.

Мономолекулярные реакции в газах, схема Линдемана — Христиансена. Теория Рейса-Ратснерма—Касселя-Маркуса. Бимолекулярные и тримолекулярные реакции, зависимость предэкспоненциального множителя от температуры. Реакции в растворах, влияние растворителя и заряда реагирующих частиц. Клеточный эффект и сольватация.

3.4. Электрохимические реакции.

Двойной электрический слой. Модельные представления о структуре двойного электрического слоя. Скорость и стадии электродного процесса. Поляризация электродов. Полярография. Ток обмена и перенапряжение. Зависимость скорости стадии разряда от строения двойного слоя. Химические источники тока, их виды. Электрохимическая коррозия. Методы защиты от коррозии.

Раздел 4. Катализ

- 4.1. *Классификация каталитических реакций и катализаторов.* Теория промежуточных соединений в катализе, принцип энергетического соответствия.
- 4.2. Гомогенный катализ. Кинетика и механизм реакций специфического кислотного катализа. Кинетика и механизм реакций общего кислотного катализа. Уравнение Бренстеда. Корреляционные уравнения для энергий активации и теплот реакций. Специфический и общий основной катализ. Нуклеофильный и электрофильный катализ.
- 4.3. Гетерогенный катализаторов. Определение скорости гетерогенной каталитической реакции. Удельная и атомная активность. Селективность катализаторов. Роль адсорбции в кинетике гетерогенных каталитических реакций. Неоднородность поверхности катализаторов, нанесенные катализаторы. Энергия активации гетерогенных каталитических реакций. Современные теории функционирования гетерогенных катализаторов. Основные промышленные каталитические процессы.

4 Вопросы к вступительному экзамену

- Электронное строение атомов И молекул. Одноэлектронное приближение. Атомные молекулярные орбитали. Электронные И конфигурации и термы атомов. Правило Хунда. Электронная плотность. электронной плотности в двухатомных Корреляционные орбитальные диаграммы. Теорема Купманса. Пределы применимости одноэлектронного приближения.
- 2. Основные составляющие межмолекулярных взаимодействий. Молекулярные комплексы. Ван-дер-ваальсовы взаимодействия. Кластеры атомов и молекул. Водородная связь. Супермолекулы и

супрамолекулярная химия.

- 3. Идеальные кристаллы. Кристаллическая решетка и кристаллическая структура. Реальные кристаллы. Типы дефектов в реальных кристаллах. Кристаллы с неполной упорядоченностью. Доменные структуры.
- 4. Симметрия кристаллов. Кристаллографические точечные группы симметрии, типы решеток, сингонии. Понятие о пространственных группах кристаллов. Индексы кристаллографических граней.
- 5. Потенциальные кривые и поверхности потенциальной энергии. Их общая структура и различные типы. Равновесные конфигурации молекул. Структурная изомерия. Оптические изомеры.
- 6. Особенности строения поверхности кристаллов и жидкостей, структура границы раздела конденсированных фаз. Молекулы и кластеры на поверхности. Структура адсорбционных слоев.
- 7. Поверхность раздела фаз. Свободная поверхностная энергия, поверхностное натяжение, избыточные термодинамические функции поверхностного слоя. Изменение поверхностного натяжения на границе жидкость-пар в зависимости от температуры. Связь свободной поверхностной энергии с теплотой сублимации (правило Стефана), модулем упругости и другими свойствами вещества.
- 8. Основные понятия химической кинетики. Простые и сложные реакции, молекулярность и скорость простой реакции. Основной постулат химической кинетики.
- 9. Способы определения скорости реакции. Кинетические кривые. Кинетические уравнения. Константа скорости и порядок реакции. Реакции переменного порядка.
- 10. Феноменологическая кинетика сложных химических реакций. Принцип независимости элементарных стадий. Кинетические уравнения для обратимых, параллельных и последовательных реакций.
- 11. Зависимость скорости реакции от температуры. Уравнение Аррениуса. Энергия активации и способы ее определения.
- 12. Первый закон термодинамики. Теплота, работа, внутренняя энергия, энтальпия, теплоемкость. Закон Гесса.
- 13. Стандартные состояния и стандартные теплоты химических реакций. Зависимость теплового эффекта реакции от температуры. Формула Кирхгофа. Таблицы стандартных термодинамических величин и их использование в термодинамических расчетах.
- 14. Второй закон термодинамики. Энтропия и ее изменения в обратимых и необратимых процессах. Теорема Карно-Клаузиуса. Различные шкалы температур.
- 15. Однокомпонентные системы. Диаграммы состояния воды, серы, фосфора и углерода. Фазовые переходы первого рода. Уравнение Клапейрона Клаузиуса.
 - 16. Двухкомпонентные системы. Различные диаграммы состояния

двухкомпонентных систем. Равновесие жидкость - пар в двухкомпонентных системах. Законы Гиббса - Коновалова. Азеотропные смеси.

- 17. Гетерогенные системы. Понятия компонента, фазы, степени свободы. Правило фаз Гиббса.
- 18. Химическое равновесие. Закон действующих масс. Различные виды констант равновесия и связь между ними. Изотерма Вант-Гоффа. Уравнения изобары и изохоры химической реакции. Расчеты констант равновесия химических реакций с использованием таблиц стандартных значений термодинамических функций.
- 19. Уравнение Гиббса-Гельмгольца. Работа и теплота химического процесса. Химические потенциалы.
- 20. Адсорбция. Адсорбент, адсорбат. Виды адсорбции. Структура поверхности и пористость адсорбента. Локализованная и делокализованная адсорбция. Мономолекулярная и полимолекулярная адсорбция. Динамический характер адсорбционного равновесия.
- 21. Изотермы и изобары адсорбции, их характеристики. Десорбция. Уравнение Генри. Константа адсорбционного равновесия. Уравнение Лэнгмюра.
- 22. Адсорбция из растворов. Уравнение Брунауэра Эмета Теллера (БЭТ) для полимолекулярной адсорбции. Определение площади поверхности адсорбента.
- 23. Электрохимические реакции. Двойной электрический слой. Модельные представления о структуре двойного электрического слоя. Теория Гуи Чапмена Грэма.
- 24. Классификация каталитических реакций и катализаторов. Теория промежуточных соединений в катализе, принцип энергетического соответствия.
- 25. Гомогенный катализ. Кислотно-основной катализ. Кинетика и механизм реакций специфического кислотного катализа.
- 26. Кинетика и механизм реакций общего кислотного катализа. Уравнение Бренстеда. Корреляционные уравнения для энергий активации и теплот реакций.
- 27. Специфический и общий основной катализ. Нуклеофильный и электрофильный катализ.
- 28. Определение скорости гетерогенной каталитической реакции. Удельная и атомная активность. Селективность катализаторов.
- 29. Роль адсорбции в кинетике гетерогенных каталитических реакций. Неоднородность поверхности катализаторов, нанесенные катализаторы. Энергия активации гетерогенных каталитических реакций.
- 30. Современные теории функционирования гетерогенных катализаторов.
 - 31. Основные промышленные каталитические процессы.

5 Критерии оценивания ответов поступающих

Результаты вступительного испытания определяются по 50-бальной шкале (от 0 до 50 баллов). Максимальное количество баллов подтверждающее успешное прохождение вступительного испытания - 50 баллов. Минимальное количество баллов, подтверждающее успешное прохождение вступительного испытания - 20 баллов.

50 — бальная шкала	Общая характеристика ответа	Критерии оценки
41–50 баллов	Ответ отличный	Ясный, достаточно точный, уверенный ответ на все вопросы экзаменационного билета, дополнительные и уточняющие вопросы. Глубокое знание материала. Свободное владение понятийным аппаратом, научным языком и терминологией. Логически правильное и убедительное изложение ответа. Ответ на вопрос достаточно аргументирован и обоснован, приведены убедительные примеры по каждому вопросу экзаменационного билета.
31-40 баллов	Ответ хороший	Ясный и уверенный ответ на все вопросы билета. Знание ключевых проблем и основного содержания материала. Умение оперировать понятиями по своей тематике. В целом логически корректное, но не всегда точное и аргументированное изложение ответа. Допущены незначительные ошибки в терминологии и при использовании фактического материала. Ответ на дополнительные и уточняющие вопросы.
20-30 баллов	Ответ удовлетвори- тельный	Ответ на все вопросы билета, требующий существенных дополнений. Недостаточно логичное и аргументированное изложение ответа. Фрагментарные, поверхностные знания материала. Затруднения с использованием понятийного аппарата и терминологии. Отсутствуют ответы на дополнительные и уточняющие вопросы.

0 – 19 баллов	Ответ неудовлетвори- тельный	Отсутствие ответа на вопросы билета; ответ только на один из вопросов; попытка ответа на все вопросы без раскрытия основного содержания; подмена ответа на вопросы экзаменационного билета ответом на смежные вопросы. Полное незнание либо отрывочное представление о материале. Неумение оперировать понятиями по своей тематике. Неумение логически определенно и последовательно излагать ответ.
---------------	------------------------------------	--

6 Список рекомендуемой литературы

- 1. Беляев, Алексей Петрович. Физическая и коллоидная химия [Текст] / А. П. Беляев, В. И. Кучук; под ред. А. П. Беляева. 2-е изд., перераб. и доп. Москва: ГЭОТАР-Медиа, 2012. 751 с.
- 2. Боруцкий П. Н. Каталитические процессы получения углеводородов разветвленного строения : изомерия и катализ синтеза углеводородов разветвленного строения [Текст] / П. Н. Боруцкий. СПб. : Профессионал, 2010. 726 с.
- 3. Быков, Валерий Иванович. Нелинейные модели химической кинетики [Текст] / В. И. Быков, С. Б. Цыбенова. М.: Красанд, 2011. 396 с.
- 4. Введенский, Вадим Юрьевич. Экспериментальные методы физического материаловедения [Текст] / В. Ю. Введенский, А. С. Лилеев, А. С. Перминов ; Национальный исследовательский технологический университет "МИСиС". Москва : МИСИС, 2011. 309 с.
- 5. Вигдорович В. И. Электрохимическое и коррозионное поведение металлов в кислых спиртовых и водно-спиртовых средах / В. И. Вигдорович, Л. Е. Цыганова. М.: Радиотехника, 2009. 327 с.
- 6. Гельман, Ганс Густавович. Квантовая химия [Текст] / Г. Гельман; с предисл. и коммент. А. Л. Чугреева и доп. Г. Гельмана мл. 2-е изд., доп. Москва: Бином. Лаборатория знаний, 2011. 533 с.
- 7. Грибов Л. А. Элементы квантовой теории строения и свойств молекул [Текст]/ Л. А. Грибов. Долгопрудный: Интеллект, 2010. 310 с.
- 8. Де Векки, Андрей Васильевич. Катализ. Теория и практика [Текст]/ А. В. Де Векки. СПб. : НПО "Профессионал", 2010. 501 с.
- 9. Иванов-Шиц, Алексей Кириллович. Ионика твердого тела: В 2-х томах. Т. 2 [Текст] / А.К. Иванов-Шиц, И.В. Мурин; Санкт-Петерб. гос. ун-т, Рос. акад. наук, Ин-т кристаллографии. СПб.: Изд-во С.-Петерб. ун-та, 2010. 999 с.

- 10. Карапетьянц, Михаил Христофорович. Примеры и задачи по химической термодинамике [Текст] / М. Х. Карапетьянц. Изд. 5-е. Москва: URSS; Москва: Либроком, 2012. 301 с.
- 11. Каржавин, Владимир Константинович. Термодинамические величины химических элементов и соединений [Текст] / В. К. Каржавин; Рос. акад. наук, Кол. науч. центр, Геол. ин-т. Апатиты: КНЦ РАН, 2011. 160 с.
- 12.Киселев М. Г. Теоретические и экспериментальные методы химии растворов [Текст] / Киселев М. Г., С. Ю. Носков, Ю. П. Пуховский и др.; отв. ред. А. Ю. Цивадзе; Рос. акад. наук, Ин-т химии растворов. Москва: Проспект, 2011. 683 с.
- 13. Кокотов, Юрий Абрамович. Химический потенциал [Текст] / Ю. А. Кокотов Санкт-Петербург: Нестор-История, 2010. 412 с.
- 14.Кук Д. Квантовая теория молекулярных систем. Единый подход [Текст] / Д. Кук; пер. с англ. Б. К. Новосадова. Долгопрудный: Интеллект, 2012. 255 с.
- 15. Лейкин, Юрий Алексеевич. Физико-химические основы синтеза полимерных сорбентов [Текст] / Ю. А. Лейкин. Москва : Бином. Лаборатория знаний, 2011. 413 с.
- 16. Лилич Л. С. Растворы как химические системы : донорно-акцепторные реакции в растворах [Текст] / Л. С. Лилич, М. К. Хрипун ; Санкт-Петербургский государственный университет. 2-е изд. СПб. : Изд-во С.-Петерб. ун-та, 2010. 251 с.
- 17. Пригожин И. Химическая термодинамика [Текст] / И. Пригожин, Р. Дефэй; пер. с англ. В. А. Михайлов. 2-е изд. М.: БИНОМ. Лаборатория знаний, 2010. 533 с. Пер.изд.: Chemical Thermodynamics / Prigogine I., Defay R. Библиогр.: с. 472-475.
- 18.Прокофьев, Валерий Юрьевич. Основы физико-химической механики экструдированных катализаторов и сорбентов [Текст] / В. Ю. Прокофьев, П. Б. Разговоров, А. П. Ильин ; Иван. гос. хим.-технол. ун-т. М:КРАСАНД, 2013. 314 с.
- 19.Соболев, Владимир Андреевич. Редукция моделей и критические явления в макрокинетике [Текст] / В. А. Соболев, Е. А. Щепакина. Москва: Физматлит, 2010. 319 с.
- 20. Уманский С. Я. Теория элементарных химических реакций [Текст] / С. Я. Уманский. Долгопрудный: Интеллект, 2009. 407 с.
- 21. Урьев Н. Б. Физико-химическая динамика дисперсных систем и материалов: фундаментальные аспекты, технологические приложения [Текст]/ Н. Б. Урьев. Долгопрудный: Интеллект, 2013. 231 с.
- 22. Урьев Н. Б. Физико-химическая динамика дисперсных систем и материалов: фундаментальные аспекты, технологические приложения [Текст]/ Н. Б. Урьев. Долгопрудный: Интеллект, 2013. 231 с.
- 23. Фенелонов, Владимир Борисович. Адсорбционно-капиллярные явления и пористая структура катализаторов [Текст] / В. Б. Фенелонов, М. С.

- Мельгунов ; Федер. агентство по образованию, Новосиб. гос. ун-т, Фак. естеств. наук. - Новосибирск: НГУ, 2010. - 188 с.
- 24. Цивадзе А. Ю. Физическая химия адсорбционных явлений [Текст] / Цивадзе А. Ю., Русанов А. И., Фомкин А. А. и др.; Рос. акад. наук, Отдние химии и наук о материалах, Науч. совет РАН по физ. химии, Ин-т физ. химии и электрохимии им. А. Н. Фрумкина РАН. - Москва: Граница, 2011. - 301 c.
- 25. Цивадзе А.Ю. Адсорбция, адсорбенты и адсорбционные процессы в нанопористых материалах : [Текст] / Под ред. А.Ю. Цивадзе - М. : Граница, 2011. - 489 с.
- 26. Цирельсон В. Г. Квантовая химия. Молекулы, молекулярные системы и тела [Текст] / В. Г. Цирельсон. - М.: БИНОМ. Лаборатория знаний, 2010. - 495 c.
- 27. Шутилин, Юрий Федорович. Физикохимия полимеров [Текст] / Ю. Ф. Шутилин. - Воронеж: Воронежская обл. типография, 2012. - 838 с.
- 28. Ярославцев А. Б. Химия твердого тела / А. Б. Ярославцев. М.: Научный мир, 2009. - 327 с.

Согласовано:

Заведующий кафедрой фундаментальных дисциплин и методологии науки

Заведующий аспирантурой

Декан факультета подготовки кадров

А.Н. Кокорин

О.В. Александрова